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Abstract—In order to generate photorealistic images, a 
central problem in computer graphics is the description of an 
object reflectance model. The reflectance field technique describes 
the object surface properties and can be used for photorealistic 
rendering. The reflection of surfaces can be described as a high 
dimensional reflectance function. For complex surfaces, an 
analytical model is not always easy to formulate, therefore the 
direct real-world surface acquisition is preferred. The reflectance 
is typically acquired with a camera or array of cameras that 
capture the reflectance field of the object surface but the 
reflectance information can be composed of thousands of images, 
depending on the surface material properties and the camera 
resolution. In this work we proposes a systematic strategy that 
incorporates Independent Component Analysis (ICA) to acquire 
the reflectance field and reducing by orders of magnitude the 
required number of captured images and keeping the same 
reflectance field quality. In our experiments, a reflectance field 
can be obtained with only 26 images, compared to the classical 
approach that require thousands of images, with an error less 
than 0.19%. 
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I.  INTRODUCTION 

To obtain the reflectance field for describing the surface 
properties of an object in a scene is one of the central 
problems in computer graphics. However, the formulation of 
analytical models for complex surfaces is not always an easy 
task. An alternative approach is to capture the reflectance 
information from real-world surfaces. This acquisition is 
carried out, for capturing with a camera or array of cameras a 
set of data that describes the transfer of energy between a light 
field of incoming rays (the illumination) and a light field of 
outgoing rays (the view). Such set of data is known as the 
Reflectance Field [1]. For obtaining the reflectance field of a 
scene, thousands of images are acquired depending on the 
optical properties of the object placed in the scene and how 
much variation is permitted in the illumination and viewer 
position [2,3,4]. 

The traditional technique to acquire the reflectance field of 
an object consists in illuminating and capturing pixel by pixel 
the object placed in the scene using a video projector. In order 
to accelerate the acquisition, some algorithms are devoted to 
parallelize the capture. To illuminate multiple pixels at the 

same time, it is possible only with the assumption that each 
projected pixel affects a small and localized region of the 
scene. Even so, the amount of images that composes the 
reflectance field is extremely large (thousands of images) [5]. 

This paper proposes a systematic strategy that uses 
independent component analysis (ICA) to acquire the 
reflectance field. Our method takes advantage of the fact that 
the pixels parallel illuminated affect local regions of the scene. 
We consider the transfer of energy between the incoming and 
outgoing light fields as signal mixtures in order to use an ICA 
approach to decompose the signal mixtures into statistically 
independent signals. Our procedure avoids the need of 
analytical model of the reflectance field, it reduces the images 
required to describe the field and our strategy keeps the same 
reflectance field quality as the traditional approach. 

II. REFLECTANCE FIELD AND INDEPENDENT COMPONENT 

ANALYSIS 

The light fields are used to describe the radiance at each 
point  and in each direction  in a scene. Ignoring 
wavelength and fixing time, this is a 5D function which we 
denote by . Thus, represents the radiance 
leaving a point  in direction . 

Levoy and Hanrahan [2] observed that if the viewer is 
moving within the unoccluded space, then the 5D 
representation of the light field can be reduced to 4D. We can 
characterize this function as , where  specifies a point 
and an incoming direction on a sphere [1]. A 4D light field can 
be used to generate an image from any viewing position and 
direction, but it will always show the scene under the same 
lighting. In general, each field of incident illumination on a 
scene will induce a different field of exiting illumination from 
the scene. Debevec et al [1] showed that the exiting light field 
from the scene under every possible incident field of 
illumination can be represented as an 8D function called the 
reflectance field:  

Here,  represents the incident light field on the 
scene, and  represents the exiting light field reflected 
off the scene. In order to work with discrete forms of these 
functions, the domain  of all incoming directions can be 
parameterized by an array indexed by . The outgoing 
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direction corresponding to an incoming direction is also 
parameterized by the same index, . Now, consider emitting 
unit radiance along ray  towards the scene (e.g., using a 
projector). The resulting light field, which is denoted by vector 

, captures the full transport of light in response to this 
impulse illumination. This is called the impulse response [6] 
or the impulse scatter function [7]. We can concatenate all the 
impulse responses into a matrix  which we call the light 
transport matrix: 

  (1) 

Since light transport is linear, any outgoing light field 
represented by a vector  can be described as linear 
combination of the impulse responses, . Thus, for an 
incoming illumination described by vector , the outgoing 
light field can be expressed as: 

  (2) 

The light transport matrix , is thus the discrete analog of 
the reflectance field . 

 
In the other hand, the independent component analysis is a 

method for separating a multivariate signal into additive 
subcomponents supposing the mutual statistical independence 
of the source signals [8]. Assume that we observe  linear 
mixtures of  independent components 

  (3) 

In the ICA model, it is assumed that each mixture  as 
well as each independent component  is a random variable. 
The observed values  are a sample of this random variable. 

It is convenient to use vector-matrix notation instead of the 
sums like in the previous equation. Let us denote by  the 
random vector whose elements are the mixtures  and 
likewise by  the random vector with elements . Let 
us denote by  the matrix with elements . Using the 
vector-matrix notation, the above mixing model is written as 

  (4) 

The statistical model in 4 is called independent component 
analysis, or ICA model. The ICA model is a generative model, 
which means that it describes how the observed data are 
generated by a process of mixing the components. The 
independent components are latent variables, meaning that 
they cannot be directly observed. Also the mixing matrix is 
assumed to be unknown. All we observe is the random vector 

, and both  and  have to be estimated by using such 
vector. 

 

Figure 1.  Schematic diagram of vector-matrix representation of mixing (a) 
and unmixing (b). (a): Two source signals are transformed by an unknown 

matrix A to form two signals mixtures. (b): Two signals mixtures are 
transformed by a unmixing matrix W to form two estimated source signals. 

The starting point for ICA is the assumption that the 
components  are statistically independent. Then, after 
estimating the matrix , we can compute its inverse , and 
obtain the independent component simply by 

  (5) 

ICA is very closely related to the method called: blind 
source separation (BSS) or blind signal separation. A “source” 
means here an original signal. “Blind” means that the mixing 
matrix is unknown. The Fig. 1 shows the mixing (top) and 
unmixing (bottom) process. 

III.  INDEPENDENT COMPONENT ANALYSIS OF THE 

REFLECTANCE FIELD 

Consider the scene configuration in Fig. 2. All the scene is 
illuminated parallel by a light source .  

 

Figure 2.  The scene is illuminated parallel by a light source . A particular 
point in the scene  will reflect light to the camera C. The outgoing light 
field  is the reflected intensity in the direction of C from the point . 

A particular point in the scene  will reflect light to the 
camera C according to 2, the outgoing light field represented 
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by the vector  is the reflected intensity in the direction of C 
from the point  and it can be considered as a signal mixture 
of the impulse responses, . 

According to the ICA model, these independent 
components  cannot be directly observed.  is the incident 
light intensity at point . 

Considering 3, the observed values from the point  are 
samples of  and can be expressed as 

  

  
  
  (6) 

where the superscripts specify the identity of the intensity 
level of the  sample and the subscripts specify the identity 
of the reflectance field element. 

Following the ICA model (see 5), we can calculate  as 
an estimated of  (light transport matrix), such as 

  (7) 

IV. TEST CAPTURE AND RESULTS 

The capture setup for the experiments requires a projector 
and a camera. There is no restriction on the location of the 
camera and the projector. Also there is no geometric 
calibration required. Capturing the reflectance field refers to 
project patterns towards a scene. The pattern is projected by 
lighting every single pixel of the light source (projector). 
Every point of light reflected from the scene is imaged by a 
sensor (camera). The set of images captured will compose the 
reflectance field. 

 

Figure 3.  Camera-projector assembly. The object in the scene is fixed and it 
is located in the field of view of the camera and projector. In the experiments, 
we are using a Samsung digital projector with a resolution of 640x480 pixels, 

and a Canon PowerShot-G5 camera with a resolution of 640x480 in B/W. 

 

Figure 4.  Example of a scene illuminated with 4 different levels of gray. 

In the experiments, the reflectance field by illuminating 
pixel by pixel (brute-force scan) onto the scene is acquired as 
in [5]. After that, we obtain the reflectance field by our 
method. To define the reflectance field quality acquired with 
our method, we compare the images synthesized from both 
reflectance fields and a RMS error is computed. 

The system setup is composed by a Samsung digital 
projector with a resolution of 640x480 pixels, and a Canon 
PowerShot-G5 camera with a resolution of 640x480 in B/W 
(Fig. 3). The object in the scene is fixed and it is located in the 
field of view of the camera and projector.  

The brute-force-scan method requires that the projector of 
the system setup with resolution  shine light onto a 
scene. Every point of light reflected from the scene is imaged 
by the camera of resolution . The number of images 
captured by the camera is:  images. The images are 
stored in a transport matrix  (see 1) of size . The 
matrix size depends on the kind of object to be recovered.  

In our method all the scene is parallel illuminated by the 
projector it is, every pixel of the projector or points of light 
with resolution 640x480 represented by  are lighted up. The 
scene will reflect light to the camera with resolution of 
640x480 that is, 640x480 signal mixtures of the impulse 
responses,  are received. We do amplitude variations by 
projecting  different levels of gray of sequential patterns. 
The Fig. 4 shows an example of a scene illuminated with 4 
different levels of gray.  

The experiments were carried out with  that is, 26 
images with amplitude variations of 10 levels of gray were 
captured. The value of N was defined by minimizing the RMS 
error from the comparison of the reflectance field acquired 
pixel by pixel and the reflectance field obtained with our 
method by doing amplitude variations of levels of gray (1 to 
255 amplitude variations it is, 1 to 255 images). 

 According to the 7, every vector  is composed by 
the  amplitude variations and 0 640x480. This means 

 

 



that we can obtain the 4D reflectance field with N images. The 
Fig. 5 shows the image synthesized by illuminating pixel by 
pixel the scene (top) and the image synthesized by using our 
method (bottom). The Fig. 6 shows the RMS error calculated 
by doing a comparison between the image synthesized by 
illuminating pixel by pixel and the image synthesized by using 
our method. 
 

 
Figure 5.  Images synthesized by illuminating pixel by pixel the scene (top) 

and by our method (bottom). 

 

V. DISCUSSION 

When the projection and capturing are performed by using 
the brute-force scan and the setup described in the 
experimental results section, 640x480 images were captured. 
In our method, only 26 images were acquired that is, with our 
method we were able to decrease the amount of images for the 
reflectance field composition up to 99%. The RMS of the 
example shows that the reflectance field quality is maintained. 
The Fig. 7 summarizes the results of our method. 

 

Figure 6.  RMS of the example, it is calculated by doing a comparison 
between the image synthesized by illuminating pixel by pixel and the image 

synthesized by using our method. 

 

Figure 7.  Relevant data (size, time, number of images and RMS) for the 
example scene captured using our method. 

VI.  CONCLUSIONS 

We have implemented a system setup composed by a 
camera and a projector to obtain the reflectance field of objects 
with an anisotropic BRDF (4D) from their surface. We 
proposed a method for accelerating the acquisition of the 
reflectance information using independent component analysis 
approach. We proposed a method that considers the outgoing 
rays of the light field as statistically independent signals. These 
independent signals are obtained from the decomposition of a 
set of signal mixtures. These signal mixtures are acquired by 
taking images of the scene when it is illuminated by a projector 
with all its pixels turned on and when the illumination suffers 
amplitude variations. The theory and experiment have 
demonstrated the ability to decrease the number of images for 
the reflectance field composition up to 99%. 
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