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Abstract—In order to generate photorealistic images, a
central problem in computer graphics is the description of an
object reflectance mode. Thereflectance field technique describes
the object surface properties and can be used for photorealistic
rendering. The reflection of surfaces can be described as a high
dimensional reflectance function. For complex surfaces, an
analytical modd is not always easy to formulate, therefore the
direct real-world surface acquisition is preferred. The reflectance
is typically acquired with a camera or array of cameras that
capture the reflectance fidd of the object surface but the
reflectance information can be composed of thousands of images,
depending on the surface material properties and the camera
resolution. In this work we proposes a systematic strategy that
incorporates Independent Component Analysis (ICA) to acquire
the reflectance field and reducing by orders of magnitude the
required number of captured images and keeping the same
reflectance field quality. In our experiments, a reflectance field
can be obtained with only 26 images, compared to the classical
approach that require thousands of images, with an error less
than 0.19%.
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. INTRODUCTION

To obtain the reflectance field for describing theaface
properties of an object in a scene is one of thetrak
problems in computer graphics. However, the fortmtaof
analytical models for complex surfaces is not alvag easy
task. An alternative approach is to capture théectnce
information from real-world surfaces. This acquésit is
carried out, for capturing with a camera or arrbgameras a
set of data that describes the transfer of eneetpyden a light
field of incoming rays (the illumination) and a higfield of
outgoing rays (the view). Such set of data is knasnthe
Reflectance Field [1]. For obtaining the reflectarield of a
scene, thousands of images are acquired dependinipeo
optical properties of the object placed in the scand how
much variation is permitted in the illumination armgbwer
position [2,3,4].

The traditional technique to acquire the refleceafield of
an object consists in illuminating and capturingepiby pixel
the object placed in the scene using a video piajeln order
to accelerate the acquisition, some algorithmsdaneted to
parallelize the capture. To illuminate multiple @i at the
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same time, it is possible only with the assumptiost each
projected pixel affects a small and localized ragaf the
scene. Even so, the amount of images that compibses
reflectance field is extremely large (thousandsrages) [5].

This paper proposes a systematic strategy that uses

independent component analysis (ICA) to acquire the
reflectance field. Our method takes advantage efféct that
the pixels parallel illuminated affect local regsoof the scene.
We consider the transfer of energy between thenimg and
outgoing light fields as signal mixtures in orderuse an ICA
approach to decompose the signal mixtures intasstatly
independent signals. Our procedure avoids the nefed
analytical model of the reflectance field, it redsdhe images
required to describe the field and our strategypkdabe same
reflectance field quality as the traditional apmtoa

Il.  REFLECTANCEFIELD AND INDEPENDENTCOMPONENT
ANALYSIS

The light fields are used to describe the radisaiceach
point z and in each directiorw in a scene. Ignoring
wavelength and fixing time, this is a 5D functioioh we

denote byL(z,w). Thus, L(z,w) represents the radiance
leaving a pointz in directionw.

Levoy and Hanrahan [2] observed that if the viewger
moving within the unoccluded space, then the 5D
representation of the light field can be reduced@o We can
characterize this function iL(+)), wherei specifies a point
and an incoming direction on a sphere [1]. A 4lifield can
be used to generate an image from any viewing ipos#nd
direction, but it will always show the scene untleg same
lighting. In general, each field of incident illungtion on a
scene will induce a different field of exiting ithination from
the scene. Debevec et al [1] showed that the gxitiht field
from the scene under every possible incident fieid
illumination can be represented as an 8D functialted the
reflectance field R(L;(v); Lo(vo)) = R(vi; ¥o)

Here, L;(v;) represents the incident light field on the
scene, ano(1) represents the exiting light field reflected
off the scene. In order to work with discrete forofsthese
functions, the domairy of all incoming directions can be
parameterized by an array indexed Dy The outgoing
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direction corresponding to an incoming direction dkso
parameterized by the same indaxNow, consider emitting
unit radiance along rax towards the scene (e.g., using a
projector). The resulting light field, which is deed by vector
t;, captures the full transport of light in resportse this
impulse illumination. This is called the impulsespense [6]
or the impulse scatter function [7]. We can contate all the
impulse responses into a matTxwhich we call the light
transport matrix:

T = [tita...t,] (1)
Since light transport is linear, any outgoing ligield
represented by a vectd,, can be described as linear
combination of the impulse responsed;,. Thus, for an
incoming illumination described by vectL;, the outgoing

light field can be expressed as:

Lo =TL; 2
The light transport matri'T, is thus the discrete analog of
the reflectance fielR(L;(1);); Lo(¢0))-

In the other hand, the independent component dradl/s
method for separating a multivariate signal intoditde
subcomponents supposing the mutual statisticalpecigence
of the source signals [8]. Assume that we obsmnli@mear
mixtureszy, ..., x,0f n independent components

T = a4, 81 + A, 52 + -t Aj,, Sn, for all ¢ (3)
In the ICA model, it is assumed that each mixiryas

well as each independent componsiits a random variable.

The observed valuer; are a sample of this random variable.

It is convenient to use vector-matrix notation @&t of the
sums like in the previous equation. Let us denatex lthe
random vector whose elements are the mixtzi; ., x, and
likewise bys the random vector with elemersy; ..., s,. Let
us denote byA the matrix with elementa;;. Using the
vector-matrix notation, the above mixing model istien as

x=As (4)
The statistical model in 4 is called independemhgonent
analysis, or ICA model. The ICA model is a genemtnodel,
which means that it describes how the observed dega
generated by a process of mixing the compors;ntIhe
independent components are latent variables, mgathiat
they cannot be directly observed. Also the mixingtnm is
assumed to be unknown. All we observe is the randector
x, and bothA ands have to be estimated by using such
vector.
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Figure 1. Schematic diagram of vector-matrix representatfomiging (a)
and unmixing (b). (a): Two source signals are fiegmnsed by an unknown
matrix A to form two signals mixtures. (b): Two sajs mixtures are
transformed by a unmixing matrix W to form two esdted source signals.

The starting point for ICA is the assumption thhe t
componentss; are statistically independent. Then, after
estimating the matriA, we can compute its inverW, and
obtain the independent component simply by

s = Wx (5)

ICA is very closely related to the method calledind
source separation (BSS) or blind signal separafiofsource”
means here an original signal. “Blind” means timeg mixing
matrix is unknown. The Fig. 1 shows the mixing ft@md
unmixing (bottom) process.

Ill.  INDEPENDENTCOMPONENTANALYSIS OF THE

REFLECTANCEFIELD

Consider the scene configuration in Fig. 2. All Hvene is
illuminated parallel by a light sourd.;.

Figure 2. The scene is illuminated parallel by a light solL;eA particular
point in the scenz; will reflect light to the camera C. The outgoirghit
field Lo is the reflected intensity in the direction ofGrh the pointz;_

A particular point in the scerxz; will reflect light to the
camera C according to 2, the outgoing light fiedqgpresented



by the vectolL is the reflected intensity in the direction of C

from the pointz; and it can be considered as a signal mixture

of the impulse responseT,

According to the ICA model, these
component¢; cannot be directly observeL; is the incident
light intensity at poin’;.

Considering 3, the observed values from the fz;rire
samples oL, and can be expressed as

Lo(ee) = (Lo(ad), Lo(a2), . (6)

where the superscripts specify the identity of ititensity

independent

level of theL, sample and the subscripts specify the identity

of the reflectance field element.

Following the ICA model (see 5), we can calculT 2as
an estimated cT (light transport matrix), such as

Te = WLO (7)
IV. TESTCAPTURE ANDRESULTS

The capture setup for the experiments requireoggtor
and a camera. There is no restriction on the looatif the

Figure 4. Example of a scene illuminated with 4 differentdisvof gray.

In the experiments, the reflectance field by illaating
pixel by pixel (brute-force scan) onto the scenadquired as
in [5]. After that, we obtain the reflectance fiely our
method. To define the reflectance field quality @oed with
our method, we compare the images synthesized both
reflectance fields and a RMS error is computed.

The system setup is composed by a Samsung digital
projector with a resolution of 640x480 pixels, amdCanon
PowerShot-G5 camera with a resolution of 640x48®AMV/

camera and the projector. Also there is no geometri(Fig. 3). The object in the scene is fixed and iicated in the

calibration required. Capturing the reflectancedfieefers to
project patterns towards a scene. The patternageged by
lighting every single pixel of the light source djector).
Every point of light reflected from the scene isaged by a
sensor (camera). The set of images captured witipose the
reflectance field.

Figure 3. Camera-projector assembly. The object in the sisefieed and it

is located in the field of view of the camera andjgctor. In the experiments,

we are using a Samsung digital projector with alte®n of 640x480 pixels,
and a Canon PowerShot-G5 camera with a resolufi6d@x480 in B/W.

field of view of the camera and projector.

The brute-force-scan method requires that the piajeof
the system setup with resoluticp X ¢ shine light onto a
scene. Every point of light reflected from the seénimaged
by the camera of resoluticn, x n. The number of images
captured by the camera ip X ¢ images. The images are
stored in a transport matrT (see 1) of sizamn x pq. The
matrix size depends on the kind of object to bevered.

In our method all the scene is parallel illuminatadthe
projector it is, every pixel of the projector oripis of light
with resolution 640x480 represented Lyare lighted up. The
scene will reflect light to the camera with reswmnot of
640x480 that is, 640x480 signal mixtures of the utap
responsesT are received. We do amplitude variations by
projecting N different levels of gray of sequential patterns.
The Fig. 4 shows an example of a scene illuminatgd 4
different levels of gray.

The experiments were carried out wN = 26 that is, 26
images with amplitude variations of 10 levels ofygmwere
captured. The value of N was defined by minimizing RMS
error from the comparison of the reflectance fiaktuired
pixel by pixel and the reflectance field obtainedthwour
method by doing amplitude variations of levels odiyg(1l to
255 amplitude variations it is, 1 to 255 images).

According to the 7, every vectLy(z;) is composed by
the v amplitude variations and<: <640x480. This means



that we can obtain the 4D reflectance field witintages. The
Fig. 5 shows the image synthesized by illuminatiixge! by

pixel the scene (top) and the image synthesizedsloyg our 05

method (bottom). The Fig. 6 shows the RMS errocudated Gl l
by doing a comparison between the image synthedzed i'. |
illuminating pixel by pixel and the image synthesizy using o4r (-
our method. 035} J{ I

|
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Figure 6. RMS of the example, it is calculated by doing a panson
between the image synthesized by illuminating piyepixel and the image
synthesized by using our method.

Brute-Force Scan Our method

Scene Size  Time Images| Size Time Images RMS
BFSvs

(TB) (Days) (#) |(MB)  (Min)  (#) Our method

(levels of gray)

Example 0.6 107 307200 78 13 26 04

Figure 7. Relevant data (size, time, number of images and RibtShe
example scene captured using our method.

VI. CONCLUSIONS

We have implemented a system setup composed by a
camera and a projector to obtain the reflectaretd 6f objects
Figure 5. Images synthesized by illuminating pixel by pixe tscene (top) with an anisotropic BRDF (4D) from their surface.eW

and by our method (bottom). proposed a method for accelerating the acquisitbrthe
reflectance information using independent compoa@ialysis
approach. We proposed a method that considerstitgoing
V. DISCUSSION rays of the Iight field as statist'ically independeigna!s. These
independent signals are obtained from the deconiposf a
set of signal mixtures. These signal mixtures aguied by
thL%king images of the scene when it is illuminatgdlprojector
with all its pixels turned on and when the illuntioa suffers
amplitude variations. The theory and experiment ehav
demonstrated the ability to decrease the numbénafes for
the reflectance field composition up to 99%.

When the projection and capturing are performedigg
the brute-force scan and the setup described in
experimental results section, 640x480 images waptuced.
In our method, only 26 images were acquired thawith our
method we were able to decrease the amount of srfagehe
reflectance field composition up to 99%. The RMStloé
example shows that the reflectance field qualitjhantained.
The Fig. 7 summarizes the results of our method.
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